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Leaky Lamb Wave NDE of Composites
Background

● Phenomenon discovered in 1983 *

● Very good agreement between theoretical analysis and
experimental data

● An efficient setup was developed for data acquisition

● Inversion algorithms were developed to allow
determination of the elastic constants

● Method was applied to NDE of defects imaging and
characterization

* Bar-Cohen & Chimenti
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LLW SCANNER AND TEST SYSTEM
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The LLW scanner is
computer controlled and
the dispersion data can
be obtained at about 45
seconds
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LLW DISPERSION DATA
Data Acquisition Process - Comrmter  Display

Spectra at a given
acquired first and
by the computer
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Dispersion curve is formed as an
accumulation of the all the
acquired modes
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DISPERSION EQUATION FOR COMPOSITE
MATERIAL AS ORTHOTROPIC MEDIA

The dispersion equation for composite material can be expressed

for symmetric mode, and

Al tan(@H / 2) + AI tan(<zmH / 2) + A3 tan(<3mH / 2) = O

for anti-symmetric mod. Where His thickness of the plate and the
parameters Ai , <i are functions Of the elastic constants cij> and the density Of

the composite materials, respectively. Thus, the related material constants
can be inverted for the experimental data through above equations.



D SPERSION CURVE EXPERIMENTAL DATA
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DISPERSION DATA AND REFLECTION AT 39.9°
FOR Gr/Ep [0]24 LAMINATE
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DISPERSION DATA FOR POROSITY AT THE
iMIDDLE LAYER OF [0]24 Gr/Ep LAMINATE
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SIMPLEX ALGORITHM
(Using two-variable problem as an example)

● consider each set of the two variables as a point in a space of dimension two. The point is called a
vertex.

● A Simplex is a geometrical figure that consists of three

vertices, as shown in the figure. B

To best fit the experiment data, the Simplex is moved
/“ ,

● s /
according to the following rules:

(a) Find the best and worst vertices.
/’w-- –T-e— --- .- -- .*R ● E

(b) Replace the worst vertex by another vertex according
\

c

to one of the four mechanisms: reflection, expansion, ‘\\

contraction, and shrinkage. ‘\*

(c) Continue the process until “satisfactory” result
A

is obtained.

● In the figure, B is the best vertex, W is the worst vertex, A is the third vertex; C is the center of A13,

R is the reflected vertex, E is the expanded vertex, S is the shrunken vertex, and T is the contracted

vertex.



SIMPLEX APPROACH

● Use the Simplex to derive a set of material constants which best fit the original
experiment data.

. Use the material constants to construct the dispersion curves and compare with the
original experiment data.

“ Remove the experimental data that are noise or experimental error.

c Use the Simplex again to derive a set of material constants for the modified
experiment data.



EXPEIWMENTAL CORROBORATION OF THE SIMPLEX ANALYZED DISPERSION CURVE
FOR A UNIDIRECTIONAL GRAPHITE/EPOXY LAMINATE (ALONG THE FIBER ORIENTATION)
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EXPERIMENTAL CORROBORATION OF THE SIMPLEX ANALYZED DISPERSION CURVE FOR
A UNIDIRECTIONAL GRAPHITE/EPOXY LAMINATE (ALONG THE 90° POLAR ANGLE)
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Thickness = 1.19-mm, p = 1.588-g/cc,
Cll = 161.34-GPa,  C12 = 6.78 -GPA, C22 = 17.75 -GPA, C2q = 6.88 -GPA, C~~ = 7.76-GPA.

Circles indicate the data points excluded when using the Simplex algorithm.



Application of LLW Data inversion of Elastic Properties:
Fire Damage Assessment

● Fire damage to composites is causing initially material
degradation and as the damage becomes more sever,
physical flaws appear.

● Repair of aerospace structures exposed to thermal damage

● Practical
infection

or removal of all the infected sections.

NDE methods are unable to indicate thermal
unless physical damage already occurred

(cracking, delamination, etc.)
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AUTOMATION OF THE LLW SYSTEM CALIBRATION

Setting up a LLW experiment requires the alignment of the sample plane in relation
to the LLW transducers in terms of the beam-crossing height as well as th~olar,
angle. $fQ~e (.

●  A“”’k- The height is being set by optimizing the relation between the
maximum refection amplitude and the LLW minima height. An algorithm was coded to
allow such setting.

b, 901,s [0] 8
● POLAR ANGLE SETTIN(2 - Using

the polar backscattering technique the
maximum scattering amplitude is
searched to identify the direction of the
first layer.



Concluding Remarks
● LLW measurements allow assessment of the matrix dominated properties.

— At high frequencies the model requires analysis of the influence of the
individual layers.

— Low frequency analysis can provide global laminate properties.
— LLW data inversion can be used to gauge the material degradation due to

manufacturing (e.g., porosity, excessive resin) and service (e.g., fire)
causes.

● All five constants of a composite laminate can be determined using pitch-catch
pulse experiments.

● The recent enhancement of dispersion curves acquisition speed makes the
characterization of defects using LLW an effective NDE tool


